3.2 一階導數檢定法與函數的遞增遞減

函數的遞增遞減:
若值 x 往右增加時，函數的圖形往上移動，則我們稱此函數為遞增(increasing)，反之若值 x 往右增加時，函數的圖形往下移動，則我們稱此函數為遞減(decreasing)。我們可由以下的例題可以看出對於某一函數在什麼地方遞增和在什麼地方遞減。

例題10:

以下為對於遞增與遞減的數學定義。
定義：(1) 若函數 f 對於某一區間內的任意兩點 x_1 和 x_2 而言，若 $x_1 < x_2$，都為 $f(x_1) < f(x_2)$ 時，則函數 f 在該區間為遞增。
(2) 若函數 f 對於某一區間內的任意兩點 x_1 和 x_2 而言，若 $x_1 < x_2$，都為 $f(x_1) > f(x_2)$ 時，則函數 f 在該區間為遞減。

而對於一般可微函數，我們可以使用導數來判斷函數在那一些區間是遞增和在那一些區間是遞減。

定理3-8：(遞增與遞減函數的檢測法) 令函數 f 在閉區間$[a,b]$連續且在開區間(a,b)可微分。
(1) 對於開區間(a,b)中所有的 x，若 $f'(x) > 0$，則 f 在閉區間$[a,b]$為遞增。
(2) 對於開區間(a,b)中所有的 x，若 $f'(x) < 0$，則 f 在閉區間$[a,b]$為遞減。

例題11: 試找出函數
$$f(x) = \frac{4}{(x-2)^2}$$
在那些區間為遞增，那些區間為遞減。

<解> 因為
$$f'(x) = -\frac{8}{(x-2)^3}.$$
因此我們有對於所有 $x \in (-\infty,2)$，
\[f'(x) = -\frac{8}{(x-2)^3} > 0 \]

且對於所有 \(x \in (2, \infty) \)，
\[f'(x) = -\frac{8}{(x-2)^3} < 0. \]

由定理3-8可得 \(f' \) 在區間 \((-\infty, 2)\) 為遞增，在區間 \((2, \infty)\) 為遞減。

由上一節的討論中可知在求一連續相對極函數的值時，只需求出此一函數的臨界值。而在此節中利用所求出的臨界點與遞增與遞減函數的檢測法將可微函數的臨界值分為為相對極大值、相對極小值或兩者皆非。

定理3-9：令函數 \(f \) 在開區間 \((a, b)\) 為連續的，且存在唯一點 \(c \in (a, b) \) 為 \(f \) 的臨界點。若 \(f \) 在集合 \((a, c) \cup (c, b)\) 上是可微分的，則可將臨界值 \(f(c) \) 分為為：

1. 若對於所有 \(x \in (a, c) \) 我們有 \(f'(x) > 0 \) 且對於所有 \(x \in (c, b) \) 我們有 \(f'(x) < 0 \)，則臨界值 \(f(c) \) 為相對極大值。
2. 若對於所有 \(x \in (a, c) \) 我們有 \(f'(x) < 0 \) 且對於所有 \(x \in (c, b) \) 我們有 \(f'(x) > 0 \)，則臨界值 \(f(c) \) 為相對極小值。
3. 若對於所有 \(x \in (a, c) \cup (c, b) \) 我們有 \(f'(x) > 0 \) (或 < 0)，則臨界值 \(f(c) \) 不是函數 \(f \) 的相對極值。

例題12: 試求函數 \(f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 \) 的相對極值。

解>首先求出函數 \(f \) 所有的臨界點。

\[f'(x) = x^3 - x^2 = x^2(x-1) = 0. \]

則臨界點 \(c = 0 \) 和 \(1 \) 於是我們可得三個子區間 \((-\infty, 0)\)、\((0, 1)\) 和 \((1, \infty)\)。利用下表檢測三個子區間：

<table>
<thead>
<tr>
<th>區間</th>
<th>(-\infty < x < 0)</th>
<th>(0 < x < 1)</th>
<th>(1 < x < \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢測值</td>
<td>(x = -1)</td>
<td>(x = \frac{1}{2})</td>
<td>(x = 2)</td>
</tr>
<tr>
<td>(f'(x))的正負</td>
<td>(f'(-1) < 0)</td>
<td>(f'(\frac{1}{2}) < 0)</td>
<td>(f'(2) > 0)</td>
</tr>
<tr>
<td>結論</td>
<td>遞減</td>
<td>遞減</td>
<td>遞增</td>
</tr>
</tbody>
</table>

由定理3-9可得知 \(f(1) \) 為相對極小值而函數 \(f \) 在臨界點 \(c = 0 \) 沒有為相對極值。

例題13: 試求函數 \(f(x) = \frac{1}{2}x - \sin x \) 在開區間 \((0, 2\pi)\) 上的相對極值。
首先求出函數f所有的臨界點。

$$f'(x) = \frac{1}{2} - \cos x = 0.$$

則臨界點$c = \frac{\pi}{3}$和$\frac{5\pi}{3}$且可以將開區間$(0, 2\pi)$分割成三個子區間$(0, \frac{\pi}{3})$、$(\frac{\pi}{3}, \frac{5\pi}{3})$和$(\frac{5\pi}{3}, 2\pi)$. 利用下表檢測三個子區間：

<table>
<thead>
<tr>
<th>階段</th>
<th>$0 < x < \frac{\pi}{3}$</th>
<th>$\frac{\pi}{3} < x < \frac{5\pi}{3}$</th>
<th>$\frac{5\pi}{3} < x < 2\pi$</th>
<th>檢測值</th>
<th>$f'(\frac{\pi}{3}) < 0$</th>
<th>$f'(\pi) > 0$</th>
<th>$f'(\frac{5\pi}{3}) < 0$</th>
<th>結論</th>
<th>遞減</th>
<th>遞增</th>
<th>遞減</th>
</tr>
</thead>
</table>

由定理3-9可得知$f(\frac{\pi}{3})$為相對極小值，$f(\frac{5\pi}{3})$為相對極大值。

例題14: 試求函數$f(x) = \frac{x^{4}+1}{x^{3}}$的相對極值。

<解>首先求出函數f所有的臨界點。

$$f'(x) = \frac{2(x^{4} - 1)}{x^{3}} = 0.$$

則臨界點$c = -1, 0, 1$於是我們可得四個子區間$(-\infty, -1), (-1, 0), (0, 1)$和$(1, \infty)$. 利用下表檢測四個子區間：

| 階段 | $-\infty < x < -1$ | $-1 < x < 0$ | $0 < x < 1$ | $1 < x < \infty$ | 檢測值 | $f(-2) < 0$ | $f(-\frac{1}{2}) > 0$ | $f(\frac{1}{2}) < 0$ | $f(2) > 0$ | 結論 | 遞減 | 遞增 | 遞減 | 遞減 |
|------|-----------------|----------------|---------|-----------------|--------|----------------|----------------|----------------|--------|------|------|------|------|

因為函數f在$x = 0$沒有定義則由定理3-9可得知$f(-1)$和$f(1)$為相對極小值。