Multiple Positive Solutions of Nonhomogeneous Elliptic Equations in Exterior Domains

Tsung-fang Wu
Department of Applied Mathematics,
National University of Kaohsiung, Kaohsiung 811, Taiwan
E-mail: tfwu.tfwu@msa.hinet.net

Abstract
In this paper, we consider the following nonhomogeneous elliptic problem
\[
\begin{cases}
-\Delta u + u = \lambda (u^{p-1} + h(x)) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u \in H^1_0(\Omega),
\end{cases}
\]
where \(2 < p < \frac{2N}{N-2}\) (\(N \geq 3\)), \(\lambda > 0\), \(\Omega = \mathbb{R}^N\) is an exterior domain in \(\mathbb{R}^N\) where \(\omega\) is a bounded set with smooth boundary, \(h \in L^2(\Omega) \cap L^\beta(\Omega)\) \((\beta > \frac{N}{2} \text{ if } N \geq 4, \beta = \frac{N}{2} \text{ if } N = 3)\) is nonnegative and \(h(x) \not\equiv 0\). We use variational methods to show that there exists a positive number \(\lambda_0\) such that the equation \((E_\lambda)\) has at least two positive solutions if \(\lambda \in (0, \lambda_0)\), no positive solution if \(\lambda > \lambda_0\) and at least one positive solution if \(\lambda = \lambda_0\). Furthermore, we use the Lusternik-Schnirelman category to show that there exists a positive number \(\lambda_* < \lambda_0\) such that the equation \((E_\lambda)\) has at least three positive solutions if \(\lambda \in (0, \lambda_*)\).

1 Introduction
In this paper, we study the existence and multiplicity of positive solutions for the following nonhomogeneous elliptic equation:
\[
\begin{cases}
-\Delta u + u = \lambda (u^{p-1} + h(x)) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u \in H^1_0(\Omega),
\end{cases}
\]

\[2000 \text{ Mathematics Subject Classification. 35J20, 35J65}\]
\[\dagger\text{Partially supported by the National Science Council of Republic of China}\]
where $2 < p < \frac{2N}{N-2}$ ($N \geq 3$), $\lambda > 0$, $\Omega = \mathbb{R}^N$ where ω is a bounded set with smooth boundary, $h \in L^2(\Omega) \cap L^2(\Omega)$ ($\beta > \frac{N}{2}$ if $N \geq 4$, $\beta = \frac{N}{2}$ if $N = 3$) is nonnegative and $h(x) \not\equiv 0$. Associated with equation (E_λ), we consider the energy functional:

$$J_\lambda(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + u^2) - \frac{\lambda}{p} \int_{\Omega} |u|^p - \lambda \int_{\Omega} h(x) u.$$

It is well known that the solutions of equation (E_λ) are the critical points of the energy functional J_λ.

In solving the above equation (E_λ) by variational methods, we find two kinds of difficulties: (i) the Laplacian from $H^2(\Omega)$ in $L^2(\Omega)$ is not Fredholm; (ii) the injection $H^1(\Omega)$ in $L^2(\Omega)$ is not compact. Indeed, although there exist various general methods to solve the analogous equation (E_λ) when Ω is a bounded domain, (see Amann [3], Bahri-Berestycki [6], Bahri-Lions [7], Brézis-Nirenberg [11], Crandall-Rabinowitz [13], Lions [23], Rabinowitz [25] and Tarantello [27], etc.), these arguments break down in the above situation. To overcome these difficulties, we need to understand precisely how the loss of compactness for sequences of approximated solutions of equation (E_λ) occurs by using the concentration-compactness method of Lions [24]. Such a question was studied by Zhu [32] and Zhu-Zhou [33]. Furthermore, Zhu-Zhou [33] proved that there is a $\lambda_0 > 0$ such that the equation (E_λ) has at least two positive solutions if $\lambda \in (0, \lambda_0)$ and no positive solution if $\lambda > \lambda_0$. But it is still unknown whether λ_0 is bounded or infinite. In this paper, we can show that the positive number λ_0 is bounded. Furthermore, if we combine above and the results of Zhu-Zhou [33], then we can get the following results.

Theorem 1.1 There exists a positive number λ_0 such that

(i) for all $\lambda \in (0, \lambda_0)$, the equation (E_λ) has at least two positive solutions and we can find a minimal positive solution u_λ such that $J_\lambda(u_\lambda) < 0$;

(ii) for $\lambda = \lambda_0$, the equation (E_{λ_0}) has at least one positive solution u_0;

(iii) for all $\lambda \in (\lambda_0, \infty)$, the equation (E_λ) has no positive solution.

Henceforth we use the symbol u_λ for $\lambda \in (0, \lambda_0)$ to denote the minimal positive solution of equation (E_λ). The proof of Theorem 1.1, based on the method of subsolutions and supersolutions and considering the following minimization problem: for $v \in H^1_0(\Omega) \setminus \{0\}$ is nonnegative, let

$$\mu(v) = \inf \left\{ \int_{\Omega} |\nabla u|^2 + u^2 \mid u \in H^1_0(\Omega), \lambda (p-1) \int_{\Omega} u^{p-2} u^2 = 1 \right\}.$$

We show that if u_λ is a minimal positive solution of equation (E_λ), then $\mu(u_\lambda) > 1$. Moreover, we can prove some uniqueness results.
Theorem 1.2 Let $\lambda_0 > 0$ as in Theorem 1.1. Then for all $\lambda \in (0, \lambda_0)$

(i) the minimal positive solution u_λ is the only positive solution satisfying $\mu (u_\lambda) > 1$;

(ii) if the equation (E_λ) has a positive solution $v > u_\lambda$ with $\mu (v) < 1$, then there does not exist another positive solution v' of equation (E_λ) such that $u_\lambda < v < v'$.

By the change of variables $v (x) = \lambda^{1/(p-2)} u (x)$, the equation (E_λ) is transformed to

$$
\begin{cases}
-\Delta v + v = v^{p-1} + \lambda^{\frac{p-1}{p-2}} h & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v \in H^1_0 (\Omega).
\end{cases}
$$

(1)

Under the assumption $\lambda \neq 0$, our equation (1) can be regarded as a perturbation problem of the following homogeneous equation:

$$
\begin{cases}
-\Delta v + v = v^{p-1} & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v \in H^1_0 (\Omega).
\end{cases}
$$

(2)

It is known that the existence of positive solutions of the homogeneous equation (2) is affected by the shape of the domain. This has been the focus of a great deal of research by several authors (see Ambrosetti-Rabinowitz [5], Bahri-Lions [8], Benci-Cerami [9], Berestycki-Lions [10], Esteban-Lions [17], Lions [24], Lien-Tzeng-Wang [21], Del Pino-Felmer [15, 16] and Wu [30, 31], etc.). Furthermore, if $\Omega = \mathbb{R}^N$, the equation (2) has a unique positive solution (see Kwong [20]).

For the equation (2) in exterior domain Ω, we can see that the Mountain Pass value is equal to the first level of breaking down of Palais–Smale condition (see Benci-Cerami [9]) and we can not get a positive solution through the Mountain Pass Theorem (i.e. equation (2) does not admit any ground state solution). However, Benci-Cerami [9] showed the existence of at least one positive solution of equation (2) under the following condition:

$$
\omega \subset B^N (0; \rho) = \{ x \in \mathbb{R}^N \mid |x| < \rho \} \text{ and } \rho \text{ is sufficiently small.}
$$

Furthermore, the critical value of their solution is strictly greater than the first break down of the Palais–Smale condition.

From the above situation and a similar idea in Adachi-Tanaka [1] who consider the following equation:

$$
\begin{cases}
-\Delta u + u = a (x) u^{p-1} + h (x) & \text{in } \mathbb{R}^N, \\
u > 0 & \text{in } \mathbb{R}^N, \\
u \in H^1 (\mathbb{R}^N),
\end{cases}
$$

($E_{a,h}$)

where $a (x) \leq 1 = \lim_{|x| \to \infty} a (x)$ and $h (x) \in H^{-1} (\mathbb{R}^N) \setminus \{0\}$ is nonnegative. Using the equation ($E_{a,0}$) does not admit any ground state solution, they proved
that the equation \((E_{a,h})\) has at least three positive solutions under the assumption \(\|h\|_{H^{-1}}\) is sufficiently small. Furthermore, under the additional condition
\[
a(x) - 1 \geq -C(-(2 + \delta)|x|)
\]
for some \(\delta > 0, C > 0\), then the equation \((E_{a,h})\) has at least four positive solutions. Thus, the existence of more than two positive solutions for equation \((E_\lambda)\) is expected and so we have the following results.

Theorem 1.3 There exists a positive number \(\lambda_* < \lambda_0\) such that for \(\lambda \in (0, \lambda_*)\), the equation \((E_\lambda)\) has at least three positive solutions.

Corollary 1.4 Suppose that \(\omega = B^N(0; \rho_0)\) and \(h(x) = h(|x|)\) is radially symmetric. Then for all \(\lambda \in (0, \lambda_*)\), the equation \((E_\lambda)\) has at least one positive solution which is not radially symmetric.

Proof. Similar to the proof of Corollary 0.3 in Adachi-Tanaka [1].

When \(\lambda \equiv 1\), there have been some progress as follows: Lin-Wang-Wu [22] proved that the equation \((E_1)\) has at least three positive solutions if \(\|h\|_{L^2}\) is sufficiently small and \(h(x)\) decays faster than \(\exp(-c|x|)\). Zhu [32] and Hirano [18] were mainly concerned with \(\Omega = \mathbb{R}^N\), \(h \in L^2(\mathbb{R}^N) \setminus \{0\}\) is nonnegative, and showed that the equation \((E_1)\) has at least two positive solutions when \(\|h\|_{L^2}\) is sufficiently small and \(h(x)\) decays faster than \(\exp(-c|x|)\). Generalizations of the result of [32] and [18] were done by Cao-Zhou [14], Jeanjean [19] and Adachi-Tanaka [2]. In [2], [14] and [19], the general equations
\[
\begin{align*}
-\Delta u + u &= f(x, u) + h(x) \quad \text{in } \mathbb{R}^N, \\
0 &< u \in H^1(\mathbb{R}^N)
\end{align*}
\]
were studied where \(f\) satisfies suitable conditions and \(h(x) \in H^{-1}(\mathbb{R}^N) \setminus \{0\}\) is nonnegative and the existence of at least two positive solutions when \(\|h\|_{H^{-1}}\) sufficiently small was proved.

This paper is organized as follows. In section 2, we prove \(\lambda_0\) is bounded. In section 3, we prove the Theorem 1.2. In section 4, we prove the Theorem 1.3.

2 Boundedness of \(\lambda_0\)

In this section we prove \(\lambda_0 > 0\) is bounded. First, we recall some results in Zhu-Zhou [33].

Lemma 2.1 For each \(r > 0\), there exists \(\tilde{\lambda} > 0\) such that for \(\lambda \in \left(0, \tilde{\lambda}\right)\), we have
(i) $J_\lambda(u) > 0$ for all $u \in S_r = \{u \in H^1_0(\Omega) \mid \|u\|_{H^1} = r\}$;
(ii) for any $\varepsilon > 0$ there exists a positive number $\delta \leq r$ such that

$$J_\lambda(u) \geq -\varepsilon$$

for all $u \in \{u \in H^1_0(\Omega) \mid r - \delta \leq \|u\|_{H^1} \leq r\}$.

For the positive number r given in Lemma 2.1, we denote

$$B_r = \{u \in H^1_0(\Omega) \mid \|u\|_{H^1} < r\}.$$

Thus, we have the following existence results.

Theorem 2.2 If $\tilde{\lambda}$ is chosen as in Lemma 2.1 and $\lambda \in \left(0, \tilde{\lambda}\right)$, then there is a $u_0 \in B_r$ such that

$$J_\lambda(u_0) = \inf \{J_\lambda(u) \mid u \in \overline{B_r}\} < 0,$$

and u_0 is a positive solution of equation (E_λ).

Let us define

$$D_\lambda = \{0 < \lambda < \infty \mid \text{the equation (E}_\lambda\text{) has a positive solution}\};$$

$$\lambda_0 = \sup D_\lambda.$$

By Theorem 2.2, D_λ is a nonempty set. Moreover, we have the following results.

Lemma 2.3 For all $\lambda \in (0, \lambda_0)$, the equation (E_λ) has a minimal solution.

Proof. See the proof of theorem 3.3 in Zhu-Zhou [33].

Lemma 2.4 Let $v \in H^1_0(\Omega) \setminus \{0\}$ is nonnegative. Then

$$\mu(v) = \inf \left\{ \int_\Omega |\nabla u|^2 + u^2 \mid u \in H^1_0(\Omega), (p-1) \lambda \int_\Omega v^{p-2} u^2 = 1 \right\}$$

is achieved by some $u \geq 0$. Furthermore, if u_λ is a minimal positive solution of equation (E_λ), then $\mu(u_\lambda) > 1$.

Proof. This easy to see that $\mu(v) < \infty$. Let $\{u_n\} \subset H^1_0(\Omega)$ be a minimizing sequence of $\mu(v)$, that is

$$(p-1) \lambda \int_\Omega v^{p-2} u_n^2 = 1 \text{ and } \int_\Omega |\nabla u_n|^2 + u_n^2 = \mu(v) + o(1).$$
Clearly, \(\{ u_n \} \) is bounded in \(H^1_0(\Omega) \). Hence, there exist a subsequence \(\{ u_n \} \) and \(\overline{u} \in H^1_0(\Omega) \) such that

\[
\begin{align*}
 u_n &\rightharpoonup \overline{u} \text{ weakly in } H^1_0(\Omega), \\
 u_n &\to \overline{u} \text{ a.e. in } \Omega.
\end{align*}
\]

Moreover,

\[
\int_{\Omega} |\nabla \overline{u}|^2 + \overline{u}^2 \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 + u_n^2 = \mu(v).
\]

Since \(\{ u_n \} \) is bounded in \(H^1_0(\Omega) \) and \(u_n \to \overline{u} \) a.e. in \(\Omega \), by the Rellich–Kondrachov theorem and the H"older inequality we have

\[
(p - 1) \lambda \int_{\Omega} v^{p-2} (u_n - \overline{u})^2 = o(1),
\]

this implies \((p - 1) \lambda \int_{\Omega} v^{p-2} \overline{u}^2 = 1 \). Thus, \(\overline{u} \) achieves \(\mu(v) \). Since \(|\overline{u}| \) also achieves \(\mu(v) \). Hence, we may assume \(\overline{u} \geq 0 \) in \(\Omega \) and \(\overline{u} \) satisfies

\[
-\Delta \overline{u} + \overline{u} = \mu(v) (p - 1) \lambda v^{p-2} \overline{u} \text{ in } \Omega \tag{3}
\]

By the maximum principle for weak solutions we deduce that \(\overline{u} > 0 \) in \(\Omega \). Similar to the proof of lemma 3.1 in Cao-Zhou [14], if \(u_\lambda \) is a minimal positive solution of equation \((E_\lambda) \), then \(\mu(u_\lambda) > 1 \).

\[\square\]

Theorem 2.5 \(0 < \lambda_0 < \infty \).

Proof. If \(\lambda_0 = \infty \), then there exists a sequence \(\{ \lambda_n \} \subset (1, \infty) \) such that \(\lambda_n \not\to \infty \). By Lemmas 2.3, 2.4, for each \(n \) the equation \((E_{\lambda_n}) \) has a positive solution \(u_n = u_{\lambda_n} \) and \(\mu(u_n) > 1 \). Thus, for each \(n \) we have

\[
\int_{\Omega} |\nabla \varphi|^2 + \varphi^2 \geq \mu(u_n) (p - 1) \lambda_n \int_{\Omega} u_n^{p-2} \varphi^2 \text{ for all } \varphi \in H^1_0(\Omega) \setminus \{0\}. \tag{4}
\]

We introduce the linear equation

\[
\begin{cases}
-\Delta v + v = h(x), \\
0 < v \in H^1_0(\Omega).
\end{cases} \tag{5}
\]

It is known that (5) has a unique positive solution \(v_0 \) and we can prove that \(u_n \geq v_0 \) for all \(n \). Indeed, we know that

\[
-\Delta u_n + u_n = \lambda_n u_n^{p-1} + \lambda_n h(x) \text{ in } \Omega, \\
-\Delta v_0 + v_0 = h(x) \text{ in } \Omega.
\]
Since \(\{\lambda_n\} \subset (1, \infty) \), we obtain
\[
-\Delta (u_n - v_0) + (u_n - v_0) = \lambda_n u_n^{p-1} + (\lambda_n - 1) h(x) > 0 \text{ in } \Omega.
\]
Then the strong maximum principle implies that \(u_n > v_0 \) in \(\Omega \). Moreover, by (4) we can conclude
\[
\int_{\Omega} |\nabla \varphi|^2 + \varphi^2 > (p - 1) \lambda_n \int_{\Omega} v_0^{p-2} \varphi^2.
\]
That is
\[
\lambda_n < \frac{\int_{\Omega} |\nabla \varphi|^2 + \varphi^2}{(p - 1) \int_{\Omega} v_0^{p-2} \varphi^2}, \text{ for all } \varphi \in H^1_0(\Omega) \setminus \{0\}.
\]
This completes the proof of theorem. \(\square \)

3 Uniqueness of Positive Solution

We now prove Theorem 1.2: (i) From Theorem 1.1 and Lemma 2.4, the equation \((E_{\lambda}) \) has a minimal positive solution \(u_{\lambda} \) such that \(\mu(u_{\lambda}) > 1 \). Suppose, by contradiction, the equation \((E_{\lambda}) \) has a second positive solution \(w_{\lambda} \) such that \(\mu(w_{\lambda}) > 1 \). Since \(u_{\lambda} \) is a minimal positive solution of equation \((E_{\lambda}) \), we have \(w_{\lambda} > u_{\lambda} \). Then \(w_{\lambda} - u_{\lambda} > 0 \). Again using Lemma 2.4
\[
\int_{\Omega} |\nabla (w_{\lambda} - u_{\lambda})|^2 + (w_{\lambda} - u_{\lambda})^2 dx = \lambda \int_{\Omega} [w_{\lambda}^{p-1} - u_{\lambda}^{p-1}] (w_{\lambda} - u_{\lambda}) dx
\]
\[
\leq (p - 1) \lambda \int_{\Omega} w_{\lambda}^{p-2} (w_{\lambda} - u_{\lambda})^2 dx
\]
\[
< \mu(w_{\lambda})(p - 1) \lambda \int_{\Omega} w_{\lambda}^{p-2} (w_{\lambda} - u_{\lambda})^2 dx
\]
\[
\leq \int_{\Omega} |\nabla (w_{\lambda} - u_{\lambda})|^2 + (w_{\lambda} - u_{\lambda})^2 dx,
\]
which is a contradiction. This completes the proof of part (i)

(ii) Assume that equation \((E_{\lambda}) \) has another positive solution \(v' \) such that \(u_{\lambda} < v < v' \). Let \(\overline{u} \) be a minimizer of \(\mu(v) \). Then by (3),
\[
\int_{\Omega} \nabla (v' - v) \nabla \overline{u} + (v' - v) \overline{u} = \lambda \int_{\Omega} [(v')^{p-1} - v^{p-1}] \overline{u}
\]
\[
\geq (p - 1) \lambda \int_{\Omega} v^{p-2} (v' - v) \overline{u}
\]
\[
> \mu(v)(p - 1) \lambda \int_{\Omega} v^{p-2} \overline{u} (v' - v)
\]
\[
= \int_{\Omega} \nabla \overline{u} \nabla (v' - v) + \overline{u} (v' - v),
\]
which is a contradiction. \(\square \)
4 Three Positive Solutions

Associated with equation (1), we consider the following minimization problem: for \(u \in H^1_0(\Omega) \) define

\[
I_\lambda(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 + u^2 - \frac{1}{p} \int_\Omega |u|^p - \lambda^{\frac{p-1}{p-2}} \int_\Omega hu;
\]

\[
M_\lambda = \{ u \in H^1_0(\Omega) \setminus \{0\} \mid \langle I'_\lambda(u) , u \rangle = 0 \};
\]

\[
\alpha_\lambda = \inf \{ I_\lambda(u) \mid u \in M_\lambda \}.
\]

It is well known that the solutions of equation (1) are the critical points of the energy functional \(I_\lambda \) (see Rabinowitz [26]). We define the Palais–Smale (denoted by (PS)) sequence and (PS)–condition for \(I_\lambda \) as follows.

Definition 4.1

(i) For \(\beta \in \mathbb{R} \), a sequence \(\{u_n\} \) is a \((PS)_\beta\)-sequence in \(H^1_0(\Omega) \) for \(I_\lambda \) if \(I_\lambda(u_n) = \beta + o(1) \) and \(I'_\lambda(u_n) = o(1) \) strongly in \(H^{-1}(\Omega) \) as \(n \to \infty \).

(ii) \(I_\lambda \) satisfies the \((PS)_\beta\)-condition if every \((PS)_\beta\)-sequence in \(H^1_0(\Omega) \) for \(I_\lambda \) contains a convergent subsequence.

Now we study the break down of the \((PS)\)-condition for \(I_\lambda \). First, we introduce the following elliptic equation in \(\mathbb{R}^N \):

\[
\begin{cases}
-\Delta u + u = u^{p-1} & \text{in } \mathbb{R}^N, \\
u > 0 & \text{in } \mathbb{R}^N, \\
u \in H^1(\mathbb{R}^N).
\end{cases}
\]

We define the energy functional \(I_0 : H^1(\mathbb{R}^N) \to \mathbb{R} \) as follows

\[
I_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + u^2 - \frac{1}{p} \int_{\mathbb{R}^N} |u|^p.
\]

Using the results of Berestycki-Lions [10] and Kwong [20], the equation (6) has a unique positive radial solution \(w(x) \) up to translation such that

\[
\alpha_0(\mathbb{R}^N) = I_0(w) = \inf \{ I_0(u) \mid \text{for any solution } u \neq 0 \text{ of equation (6)} \}
\]

and for any \(\delta > 0 \) and \(x \in \mathbb{R}^N \),

\[
w(x) \leq C \exp(- (1 - \delta) |x|) \text{ and } |\nabla w(x)| \leq C \exp(- (1 - \delta) |x|)
\]

for some \(C > 0 \). Moreover, the unique solution \(w(x) \) of equation (6) plays an important role in describing the asymptotic behavior of a \((PS)\)-sequence for \(I_\lambda \).
Proposition 4.2 Let \(\{u_n\} \) be a (PS)-sequence in \(H_0^1(\Omega) \) for \(I_\lambda \). Then there exist a subsequence \(\{u_n\} \), an integer \(m \in \mathbb{N} \cup \{0\} \), \(m \) sequences \(\{x_n^1\}, \{x_n^2\}, \ldots, \{x_n^m\} \subset \mathbb{R}^N \) and a critical point \(u_0 \in H_0^1(\Omega) \) of \(I_\lambda \) such that
\[
\begin{align*}
|x_n^i| & \to \infty \text{ for } 1 \leq i \leq m, \\
x_n^i - x_n^j & \to \infty \text{ for } 1 \leq i, j \leq m \text{ and } i \neq j, \\
u_n & \rightharpoonup u_0 \text{ weakly in } H_0^1(\Omega), \\
u_n & = u_0 + \sum_{i=1}^m w(\cdot - x_n^i) + o(1) \text{ strongly in } H^1(\mathbb{R}^N), \\
I_\lambda(u_n) & = I_\lambda(u_0) + mI_0(w) + o(1).
\end{align*}
\]

Proof. This is a standard result. See Benci-Cerami [9] and Lions [24] for analogous arguments. \(\square \)

Corollary 4.3 \(I_\lambda \) satisfies the (PS)\(\beta \)-condition for \(\beta < \alpha_\lambda + \alpha_0 \left(\mathbb{R}^N \right) \).

Proof. Similar to the proof of corollary 1.10 in Adachi-Tanaka [1]. \(\square \)

Next, we give some properties of the functional \(I_0 \).

Lemma 4.4 We have
\[
\begin{align*}
(i) & \inf \{ I_0(u) \mid u \in M_0 \} = \alpha_0 \left(\mathbb{R}^N \right), \\
(ii) & \inf \{ I_0(u) \mid u \in M_0 \} \text{ is not achieved}, \\
(iii) & I_0 \text{ satisfies the (PS)\(\beta \)-condition for } \beta \in (\alpha_0 \left(\mathbb{R}^N \right), 2\alpha_0 \left(\mathbb{R}^N \right)) \).
\end{align*}
\]

Proof. See Benci-Cerami [9]. \(\square \)

Finally, we establish the regularity and the decay estimate for solutions of equation \((E_\lambda)\). In what follows, we denote by \(\rho_0 > 0 \) a minimum number such that \(\omega \subset B^N(0; \rho_0) \). Then we have the following results.

Lemma 4.5 If \(u \in H_0^1(\Omega) \) is a weak solution of equation \((E_\lambda)\), then
\[
\begin{align*}
(i) & u \in C(\Omega) \cap L^q(\Omega) \text{ for all } 2 \leq q < \infty \text{ and } u(x) \to 0 \text{ as } |x| \to \infty; \\
(ii) & \text{for each } \varepsilon > 0, \text{ there exist constants } C > 0 \text{ and } R_1 > \rho_0 \text{ such that } \\
u(x) & \geq C \exp \left(-(1 + \varepsilon) |x| \right), \text{ for all } |x| \geq R_1.
\end{align*}
\]

Proof. See the proof of lemma 3.5 in Zhu-Zhou [33]. \(\square \)

Remark 4.1 If \(u_0 \) is a positive solution of equation \((E_\lambda)\), then \(v_0 = \lambda^{1/(p-2)}u_0 \) is a positive solution of equation (1). Furthermore, by Lemma 4.5 we have
\[
v_0(x) \geq \lambda^{1/(p-2)}C \exp \left(-(1 + \varepsilon) |x| \right), \text{ for all } |x| \geq R_1.
\]
4.1 Existence of a local minimum

Define

\[\psi_\lambda (u) = \langle I'_\lambda (u), u \rangle = \| u \|_{H^1}^2 - \int_\Omega |u|^p - \lambda \frac{p-1}{p-2} \int_\Omega hu. \]

Then we have the following results.

Lemma 4.6 There exists \(\lambda_1 > 0 \) such that for each \(\lambda \in (0, \lambda_1) \) and \(u \in M_\lambda \) we have

\[\langle \psi'_\lambda (u), u \rangle = \| u \|_{H^1}^2 - (p-1) \int_\Omega |u|^p \neq 0. \]

Proof. Our proof is almost the same as that in Tarantello [27]. \(\square \)

Throughout this section, let \(\lambda \in (0, \lambda_1) \). Then we write

\[M_\lambda = M_\lambda^+ \cup M_\lambda^-, \]

where

\[M_\lambda^+ = \left\{ u \in M_\lambda \mid \| u \|_{H^1}^2 - (p-1) \int_\Omega |u|^p > 0 \right\}, \]

\[M_\lambda^- = \left\{ u \in M_\lambda \mid \| u \|_{H^1}^2 - (p-1) \int_\Omega |u|^p < 0 \right\}, \]

and define

\[\alpha_\lambda^+ = \inf \{ I_\lambda (u) \mid u \in M_\lambda^+ \} ; \quad \alpha_\lambda^- = \inf \{ I_\lambda (u) \mid u \in M_\lambda^- \}. \]

For each \(u \in H^1_0 (\Omega) \setminus \{0\} \), we define

\[t_{\text{max}} = \left(\frac{\| u \|_{H^1}^2}{(p-1) \int_\Omega |u|^p} \right)^{\frac{1}{p-2}} > 0. \]

Then we have the following lemma.

Lemma 4.7 For each \(u \in H^1_0 (\Omega) \setminus \{0\} \), we have

(i) there is a unique \(t^- = t^- (u) > t_{\text{max}} > 0 \) such that \(t^- u \in M_\lambda^- \) and \(I_\lambda (t^- u) = \max_{t \geq t_{\text{max}}} I_\lambda (tu) \);

(ii) \(t^- (u) \) is a continuous function for nonzero \(u \);

(iii) \(M_\lambda^- = \left\{ u \in H^1_0 (\Omega) \setminus \{0\} \mid \frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right) = 1 \right\} \);

(iv) if \(\int_\Omega h u > 0 \), then there is a unique \(0 < t^+ = t^+ (u) < t_{\text{max}} \) such that \(t^+ u \in M_\lambda^+ \) and \(I_\lambda (t^+ u) = \min_{0 \leq t \leq t^-} I_\lambda (tu) \).

Proof. Similar to the proof of some results in Tarantello [27]. \(\square \)
For $c > 0$, we define
\[
I_{0,c}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + u^2 - \frac{1}{p} \int_{\Omega} c |u|^p ;
\]
\[
M_{0,c} = \{ u \in H^1_0(\Omega) \setminus \{0\} \mid \langle I_{0,c}(u), u \rangle = 0 \} ;
\]
\[
M_0 = \{ u \in H^1_0(\Omega) \setminus \{0\} \mid \langle I_0(u), u \rangle = 0 \} .
\]

Note that $I_0 = I_{0,c}$ for $c = 1$, and for each $u \in M_0^\mu$ there is a unique $t^1 = t^1(u) > 0$ such that $t^1u \in M_0$. Then we have the following results.

Lemma 4.8 For each $u \in M_0^\mu$, we have
(i) there is a unique $t^c(u) > 0$ such that $t^c(u)u \in M_{0,c}$ and
\[
\max_{t \geq 0} I_{0,c}(tu) = I_{0,c}(t^c(u)u) = \left(\frac{1}{2} - \frac{1}{p}\right) c^{\frac{p-2}{2}} \left[\frac{|u|_{H^1}}{|u|_{L^p}} \right]^{\frac{2p}{p-2}} ;
\]
(ii) for $\mu \in (0, 1)$,
\[
I_\mu(u) \geq \left(1 - \lambda_{p-2}^{\frac{p-1}{p-2}} \mu \right)^\frac{p}{p-2} I_0(t^1u) - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2} .
\]

Proof. (i) Similar to the proof of some result in Brown-Zhang [12].
(ii) For each $u \in M_0^\mu$, let $c = 1/ \left(1 - \lambda_{p-2}^{\frac{p-1}{p-2}} \mu \right)$, $t^c = t^c(u) > 0$ and $t^1 = t^1(u) > 0$ such that $t^c u \in M_{0,c}$ and $t^1 u \in M_0$. For $\mu \in (0, 1)$, we have
\[
\int_{\Omega} h t^c u dx \leq \|t^c u\|_{H^1} \|h\|_{L^2} \leq \frac{\mu}{2} \|t^c u\|^2_{H^1} + \frac{1}{2\mu} \|h\|^2_{L^2} .
\]

Then by part (i),
\[
\sup_{t \geq 0} I_\mu(tu) \geq I_\mu(t^c u) \geq \frac{1}{2c} \|t^c u\|^2_{H^1} - \frac{1}{p} \int_{\Omega} |t^c u|^p - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2} = \frac{1}{c} \left[\frac{1}{2} \|t^c u\|^2_{H^1} - \frac{1}{p} \int_{\Omega} c |t^c u|^p \right] - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2} = \frac{1}{c} I_{0,c}(t^c u) - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2}
\]
\[
= \left(1 - \lambda_{p-2}^{\frac{p-1}{p-2}} \mu \right)^\frac{p}{p-2} \left(\frac{1}{2} - \frac{1}{p}\right) \left[\frac{|u|_{H^1}}{|u|_{L^p}} \right]^{\frac{2p}{p-2}} - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2} = \left(1 - \lambda_{p-2}^{\frac{p-1}{p-2}} \mu \right)^\frac{p}{p-2} I_0(t^1 u) - \frac{\lambda_{p-2}^{\frac{p-1}{p-2}}}{2\mu} \|h\|^2_{L^2} .
\]
By Lemma 4.7 (i), \[\sup_{t \geq 0} I_\lambda (tu) = I_\lambda (u) . \]

Thus, \[I_\lambda (u) \geq \left(1 - \lambda^{\frac{p-1}{2}} \mu \right)^{\frac{p}{p-2}} I_0 (t^1 u) - \frac{\lambda^{\frac{p-1}{p-2}}}{2 \mu} \| h \|_{L^2}^2 . \]

This completes the proof. \qed

Lemma 4.9 (i) For each \(u \in M^+_\lambda \), we have \(\int_\Omega h u > 0 \) and \(I_\lambda (u) < 0 \). In particular, \(\alpha_\lambda \leq \alpha^+_\lambda < 0 \).

(ii) \(I_\lambda \) is coercive and bounded below on \(M_\lambda \).

Proof. Similar to the proof of theorem 1 in Tarantello [27]. \qed

Furthermore, we have the following result.

Theorem 4.10 For each \(\lambda \in (0, \lambda_1) \), the equation (1) has a positive solution \(v_\lambda \in M^+_\lambda \) such that \(I_\lambda (v_\lambda) = \alpha_\lambda = \alpha^+_\lambda \). Furthermore, \(\| v_\lambda \|_{H^1} \to 0 \) as \(\lambda \to 0 \).

Proof. Similar to the proof of theorem 2.1 in Cao-Zhu [14]. \qed

4.2 Existence of Two Solutions

In this subsection, we prove that the equation (\(E_\lambda \)) has at least two positive solutions. Let \(w(x) \) be a unique positive radial solution of equation (6) and \(e \in S^{N-1} = \{ x \in \mathbb{R}^N \mid |x| = 1 \} \). We denote \[w_l (x) = w(x + le), \ l \in (0, \infty). \]

Recall that \(\Omega = \mathbb{R}^N \setminus \omega \), where \(\omega \subset B^N (0, \rho_0) \) and let \(\psi : \mathbb{R}^N \to [0, 1] \) be a \(C^\infty \) function defined by \(\psi (x) = \overline{\psi} (\frac{|x|}{\rho_0}) \), where \(\overline{\psi} : \mathbb{R}^+ \cup \{ 0 \} \to [0, 1] \) is a \(C^\infty \) nondecreasing function such that \[\overline{\psi} (t) = \begin{cases} 0, & t \leq 1; \\ 1, & t \geq 2. \end{cases} \]

Clearly, \(\psi w_l \in H^1_0 (\Omega) \). Then we have the following results.

Lemma 4.11 (i) \(\lim_{l \to \infty} \| \psi w_l (x) - w_l (x) \|_{H^1} = 0 \) uniformly in \(e \in S^{N-1} \).

(ii) \(\lim_{l \to \infty} I_0 (\psi w_l) = \alpha_0 (\mathbb{R}^N) \) uniformly in \(e \in S^{N-1} \).

Proof. Similar to the proof of theorem 2.4 in Benci-Cerami [9]. \qed
Lemma 4.12 (i) For each $\lambda \in (0, \lambda_1)$ there exists $t_0 > 0$ such that for $t > 2\rho_0 + 1$,
\[I_{\lambda} (v_\lambda + t\psi w_l) < I_{\lambda} (v_\lambda) \quad \text{for all } t \geq t_0 \text{ and } e \in S^{N-1}. \]

(ii) For each $\lambda \in (0, \lambda_1)$ there exists $l_1 > 0$ such that for $l > l_1$,
\[\sup_{t \geq 0} I_{\lambda} (v_\lambda + t\psi w_l) < I_{\lambda} (v_\lambda) + \alpha_0 (\mathbb{R}^N) = \alpha_\lambda + \alpha_0 (\mathbb{R}^N), \]
where v_λ is the local minimum in Theorem 4.10.

Proof. (i) By the definition of ψ and v_λ is a positive solution of equation (E_λ), using the fact that $\int_\Omega \nabla v_\lambda \nabla \psi w_l = -\int \Delta v_\lambda \psi w_l$ and $\psi (x) \equiv 1$ whenever $|x| > 2\rho_0$, we have
\[
I_{\lambda} (v_\lambda + t\psi w_l) = I_{\lambda} (v_\lambda) + \frac{t^2}{2} \int_\Omega |\nabla \psi w_l|^2 + \psi^2 w_l^2 dx - \int_\Omega \int_0^{t\psi w_l} [(v_\lambda + s)^{p-1} - v_\lambda^{p-1}] ds dx \]
\[
\leq I_{\lambda} (v_\lambda) + \frac{t^2}{2} \int_\Omega |\nabla \psi w_l|^2 + \psi^2 w_l^2 dx + t \int_\Omega w_l v_\lambda^{p-1} dx - \frac{1}{p} \int_{B^{N(0;2\rho_0)^c}} (tw_l)^p dx \]
\[
\leq I_{\lambda} (v_\lambda) + \frac{t^2}{2} \int_\Omega |\nabla \psi w_l|^2 + \psi^2 w_l^2 dx + t \int_\Omega w_l v_\lambda^{p-1} dx - \frac{tp}{p} \int_{B^{N(l;1)}} w_l^p dx \]
\[
= I_{\lambda} (v_\lambda) + \frac{t^2}{2} \int_\Omega |\nabla \psi w_l|^2 + \psi^2 w_l^2 dx + t \int_\Omega w_l v_\lambda^{p-1} dx - \frac{tp}{p} \int_{B^{N(0;1)}} w_l^p dx. \]

Since $p > 2$, by Lemma 4.11 we can choose $t_0 > 0$ large enough such that (i) holds.

(ii) Since I_{λ} is continuous in $H^1_0 (\Omega)$, there exists $t_1 > 0$ such that for $l > 2\rho_0 + 1$,
\[I_{\lambda} (v_\lambda + t\psi w_l) < I_{\lambda} (v_\lambda) + \alpha_0 (\mathbb{R}^N) \quad \text{for all } t < t_1 \text{ and } e \in S^{N-1}. \]

Using part (i) we know that for $l > 2\rho_0 + 1$,
\[\sup_{t \geq t_0} I_{\lambda} (v_\lambda + t\psi w_l) < I_{\lambda} (v_\lambda) + \alpha_0 (\mathbb{R}^N) \quad \text{for all } e \in S^{N-1}. \]

Thus, we only need to show that there exists $l_0 > 0$ such that for $l > l_0$,
\[\sup_{t_1 \leq t \leq t_0} I_{\lambda} (v_\lambda + t\psi w_l) < I_{\lambda} (v_\lambda) + \alpha_0 (\mathbb{R}^N) \quad \text{for all } e \in S^{N-1}. \]

By Brown-Zhang [12] and Willem [29], we know that
\[\frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla w_l|^2 + w_l^2 dx - \frac{tp}{p} \int_{\mathbb{R}^N} w_l^p dx \leq \alpha_0 (\mathbb{R}^N). \]
For \(l > 2\rho_0 + 1 \) and \(t_1 \leq t \leq t_0 \),
\[
I_\lambda (v_\lambda + t\psi w_l) = I_\lambda (v_\lambda) + \frac{t^2}{2} \int_\Omega |\nabla \psi w_l|^2 + \psi^2 w_l^2 dx - \int_\Omega \int_0^{t\psi w_l} [(v_\lambda + s)^{p-1} - v_\lambda^{p-1}] ds dx
\]
\[
\leq I_\lambda (v_\lambda) + \frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla \psi|^2 (|\nabla w_l|^2 + w_l^2) dx + \frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla \psi|^2 w_l^2 dx
\]
\[
+ t^2 \int_{\mathbb{R}^N} |\nabla \psi| |\nabla w_l| |w_l| dx - \int_{\mathbb{R}^N} \int_0^{t\psi w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} ds dx
\]
\[
\leq I_\lambda (v_\lambda) + \alpha_0 (\mathbb{R}^N) + \frac{t^2}{2} \int_{\text{supp}(\nabla \psi)} |\nabla \psi|^2 w_l^2 + 2 |\nabla \psi| |\nabla w_l| |w_l| dx
\]
\[
+ \int_{B^{(0;2\rho_0)}} \int_0^{t_1 w_l} s^{p-1} ds dx - \int_{B^{(le;1)}} \int_0^{t_1 w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} - s^{p-1} ds dx
\]
\[
\leq I_\lambda (v_\lambda) + \alpha_0 (\mathbb{R}^N) + \frac{t_0^2}{2} \int_{\text{supp}(\nabla \rho)} |\nabla \psi|^2 w_l^2 + 2 |\nabla \psi| |\nabla w_l| |w_l| dx
\]
\[
+C \int_{B^{(0;2\rho_0)}} (t_0 w_l)^2 + (t_0 w_l)^p dx - \int_{B^{(le;1)}} \int_0^{t_1 w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} - s^{p-1} ds dx.
\] (9)

By the Taylor expansion
\[
\int_0^{t_1 w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} - s^{p-1} ds \geq \int_0^{t_1 w_l} (p - 1) s^{p-2} v_\lambda - v_\lambda^{p-1} ds
\]
\[
= [(t_1 w_l)^{p-2} - v_\lambda^{p-2}] t_1 w_l v_\lambda.
\] (10)

Since \(w_l > 0 \) in \(\mathbb{R}^N \), there exists a number \(c_1 > 0 \) such that
\[
w_l \geq c_1 \text{ in } B^N (le; 1)
\] (11)

Since \(v_\lambda (x) \rightarrow 0 \) as \(|x| \rightarrow \infty \), it follows from the definition of \(w_l \) that for \(l \) large enough,
\[
t_1 w_l > v_\lambda \text{ in } B^N (le; 1).
\]
Thus, there exist $c_2 > 0$ and $l_0 > 0$ such that for $l > l_0$,
\[(t_1 w_l)^{p-2} - v_\lambda^{p-2} > c_2. \quad (12)\]

Then combining (10) – (12) we have
\[
\int_{B_{(l\epsilon;1)}} \int_0^{t_1 w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} - s^{p-1} ds \geq c_1 c_2 \int_{B_{(l\epsilon;1)}} t_1 v_\lambda dx.
\]

By (8), we find that for any $\varepsilon > 0$, there exists $C_1 > 0$ such that
\[
\int_{B_{(l\epsilon;1)}} \int_0^{t_1 w_l} (v_\lambda + s)^{p-1} - v_\lambda^{p-1} - s^{p-1} ds \geq C_1 \lambda^{-\frac{1}{p-2}} \exp((-1 + \varepsilon) l), \quad (13)
\]
for all $l \geq \max \{l_0, R_1 + 1\}$, where R_1 is given in Lemma 4.5 (ii). It follows from (7) that for any $\delta > 0$, there exists a constant $C_2 > 0$ such that for $l \geq 0$,
\[
\frac{t_0^2}{2} \int_{\text{supp}(\nabla \psi)} |\nabla \psi|^2 w_l^2 + 2 |\nabla \psi| |\nabla w_l| |w_l| \, dx \leq C_2 \exp(-2(1 - \delta) l) \quad (14)
\]
and
\[
\int_{B_{(0;2\rho_0)}} (t_0 w_l)^2 + (t_0 w_l)^p \, dx \leq C_2 \exp(-2(1 - \delta) l) \quad (15)
\]
Then from (9) and using (13) – (15), we find that
\[
I_\lambda (v_\lambda + t\psi w_l)
\leq I_\lambda (v_\lambda) + \alpha_0 \left(\mathbb{R}^N \right) + C_2 \exp(-2(1 - \delta) l) - C_1 \lambda^{-\frac{1}{p-2}} \exp((-1 + \varepsilon) l)
\]
for all $t \in [t_1, t_0]$ and $l \geq \max \{l_0, R_1 + 1\}$. Choosing positive numbers δ, ε such that $2\delta + \varepsilon < 1$, we can find some $l_1 > \max \{l_0, R_1 + 1\}$ large enough such that
\[
C_2 \exp(-2(1 - \delta) l) - C_1 \lambda^{-\frac{1}{p-2}} \exp((-1 + \varepsilon) l) < 0 \text{ for all } l \geq l_1. \quad (16)
\]
This completes the proof of (ii).

\[\Box\]

Remark 4.2 By inequality (16), we have $l_1 \to \infty$ as $\lambda \to 0$.

In the following, we use an idea of Adachi-Tanaka [1]. For $c \in \mathbb{R}$, we denote
\[
[I_\lambda \leq c] = \{u \in M_\lambda^- : I_\lambda (u) \leq c\}.
\]

We then try to show for a sufficiently small $\sigma > 0$
\[
\text{cat} \left([I_\lambda \leq \alpha_\lambda + \alpha_0 \left(\mathbb{R}^N \right) - \sigma] \right) \geq 2. \quad (17)
\]
To prove (17), we need some preliminaries. Recall the definition of Lusternik-Schnirelman category.
Definition 4.13 (i) For a topological space X, we say a non-empty, closed subset $Y \subset X$ is contractible to a point in X if and only if there exists a continuous mapping

$$\eta : [0, 1] \times Y \to X$$

such that for some $x_0 \in X$

$$\eta(0, x) = x \text{ for all } x \in Y,$$

and

$$\eta(1, x) = x_0 \text{ for all } x \in Y.$$

(ii) We define

$$\text{cat} (X) = \min \{ k \in \mathbb{N} \mid \text{there exist closed subsets } Y_1, ..., Y_k \subset X \text{ such that } Y_j \text{ is contractible to a point in } X \text{ for all } j \text{ and } \bigcup_{j=1}^{k} Y_j = X \}.$$

When there do not exist finitely many closed subsets $Y_1, ..., Y_k \subset X$ such that Y_j is contractible to a point in X for all j and $\bigcup_{j=1}^{k} Y_j = X$, we say $\text{cat} (X) = \infty$.

We need the following two lemmas.

Lemma 4.14 Suppose that X is a Hilbert manifold and $\Psi \in C^1 (X, \mathbb{R}).$ Assume that there are $c_0 \in \mathbb{R}$ and $k \in \mathbb{N},$

(i) $\Psi (x)$ satisfies the Palais–Smale condition for energy level $c \leq c_0$;

(ii) $\text{cat} \left(\{ x \in X \mid \Psi (x) \leq c_0 \} \right) \geq k.$

Then $\Psi (x)$ has at least k critical points in $\{ x \in X ; \Psi (x) \leq c_0 \}$.

Proof. See Ambrosetti [4, Theorem 2.3].

Lemma 4.15 Let $N \geq 1$, $S^{N-1} = \{ x \in \mathbb{R}^N ; |x| = 1 \}$, and let X be a topological space. Suppose that there are two continuous maps

$$F : S^{N-1} \to X, \ G : X \to S^{N-1}$$

such that $G \circ F$ is homotopic to the identity map of S^{N-1}, that is, there exists a continuous map $\zeta : [0, 1] \times S^{N-1} \to S^{N-1}$ such that

$$\zeta (0, x) = (G \circ F) (x) \text{ for each } x \in S^{N-1},$$

$$\zeta (1, x) = x \text{ for each } x \in S^{N-1}.$$

Then

$$\text{cat} (X) \geq 2.$$
Proof. See Adachi-Tanaka [1, Lemma 2.5].

Let

\[A_1 = \left\{ u \in H^1_0 (\Omega) \setminus \{0\} \mid \frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right) > 1 \right\} \cup \{0\}; \]
\[A_2 = \left\{ u \in H^1_0 (\Omega) \setminus \{0\} \mid \frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right) < 1 \right\}. \]

Follows from Tarantello [27], we have the following results.

Lemma 4.16

(i) \(H^1_0 (\Omega) \setminus M_\lambda^- = A_1 \cup A_2. \)

(ii) \(M_\lambda^+ \subset A_1. \)

(iii) For each \(\lambda \in (0, \lambda_1) \) there exist \(t_\ast > 1 \) and \(l_2 \geq l_1 \) such that \(v_\lambda + t_\ast \psi w_1 \in A_2 \) for all \(l \geq l_2, \) where \(l_1 \) is defined as in Lemma 4.12.

(iv) For each \(l \geq l_2 \) there exists \(s_l \in (0, 1) \) such that \(v_\lambda + s_l t_\ast \psi w_1 \in M_\lambda^- \) and

\[s_l t_\ast = 1 + o(1) \quad \text{as} \quad \lambda \to 0. \]

(v) \(\alpha^-_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N). \)

Proof. (i) By Lemma 4.7 (iii).

(ii) For each \(u \in M_\lambda^+ \), we have

\[1 < t_{\max} (u) < t^- (u) = \frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right), \]

and so \(M_\lambda^+ \subset A_1. \) In particular, \(v_\lambda \in A_1. \)

(iii) There is a constant \(c > 0 \) such that \(0 < t^- \left(\frac{v_\lambda + t \psi w_1}{\| v_\lambda + t \psi w_1 \|_{H^1}} \right) < c \) for all \(t \geq 0 \) and \(l > 0. \) Otherwise, there exist sequences \(\{ t_n \} \) and \(\{ l_n \} \) such that \(l_n \to \infty \) as \(n \to \infty \) and \(t^- \left(\frac{v_\lambda + t_n \psi w_1}{\| v_\lambda + t_n \psi w_1 \|_{H^1}} \right) \to \infty \) as \(n \to \infty. \) Let \(w_n = v_\lambda + t_n \psi w_1. \) We claim that \(\| w_n \|_{L^p} \) is bounded below away from zero.

Case (a): \(t_n \) is bounded away from zero. Since \(w \) is a ground state solution of equation (6), we have

\[\| \psi w_n \|_{H^1}^2 = \| \psi w_n \|_{L^p}^p + o(1) = \frac{2p}{p - 2} \alpha_0 (\mathbb{R}^N) + o (1). \]

Thus,

\[\| w_n \|_{L^p}^p = \frac{1}{\| v_{t_n} \psi w_n \|_{H^1}^p} \int_{\Omega} \left(\frac{v_{t_n} \psi w_n}{t_n} \right)^p \]
\[\geq \frac{\| \psi w_n \|_{L^p}^p}{2^{p-1} \left(\| v_{t_n} \|_{H^1}^p + \| \psi w_n \|_{H^1}^p \right)} \]
\[= \frac{\alpha_0 (\mathbb{R}^N)}{2^{p-1} \left(\frac{\| v_{t_n} \|_{H^1}^p}{c_0} + \left(\frac{2p}{p - 2} \alpha_0 (\mathbb{R}^N) \right)^{\frac{p}{2}} \right)} + o(1). \]
Case (b) : there is a subsequence \(\{t_n\} \) such that \(t_n = o(1) \) as \(n \to \infty \). Then
\[
\| v_\lambda + t_n \psi w_n \|_{H^1}^2 = \| v_\lambda \|_{H^1}^2 + t_n^2 \| \psi w_n \|_{H^1}^2 + 2t_n \langle \psi w_n, v_\lambda \rangle_{H^1} = \| v_\lambda \|_{H^1}^2 + o(1).
\]
Thus,
\[
\| w_n \|_{L^p}^p \geq \frac{1}{\| v_\lambda + t_n \psi w_n \|_{H^1}^p} \int_\Omega v_\lambda^p = \frac{1}{\| v_\lambda \|_{H^1}^p} \int_\Omega v_\lambda^p + o(1).
\]
Since \(t^- (w_n) \in M^-_\lambda \subset M_\lambda \), we have
\[
I_\lambda (t^- (w_n) w_n) = \frac{1}{2} [t^- (w_n)]^2 - \frac{1}{p} [t^- (w_n)]^p \int_\Omega w_n^p - t^- (w_n) \int_\Omega h w_n \to -\infty \text{ as } n \to \infty.
\]
However, \(I_\lambda \) is bounded below on \(M_\lambda \), which is a contradiction.

Let
\[
t_* = \left(\frac{p - 2}{2p\alpha_0 (\mathbb{R}^N)} \left| c^2 - \| v_\lambda \|_{H^1}^2 \right| \right)^{\frac{1}{2}} + 1.
\]
Then
\[
\| v_\lambda + t_* \psi w_l \|_{H^1}^2 = \| v_\lambda \|_{H^1}^2 + t_*^2 \left(\frac{2p}{p - 2} \right) \alpha_0 (\mathbb{R}^N) + o(1)
\]
\[
> c^2 + o(1) \geq \left(t^- \left(\frac{v_\lambda + t_* \psi w_l}{\| v_\lambda + t_* \psi w_l \|_{H^1}} \right) \right)^2 + o(1).
\]
Thus, there exists \(l_2 \geq l_1 \) such that for \(l \geq l_2 \),
\[
\frac{1}{\| v_\lambda + t_* \psi w_l \|_{H^1}} t^- \left(\frac{v_\lambda + t_* \psi w_l}{\| v_\lambda + t_* \psi w_l \|_{H^1}} \right) < 1
\]
or \(v_\lambda + t_* \psi w_l \in A_2 \).

(iv) For each \(l \geq l_2 \), define a path \(\gamma_l (s) = v_\lambda + st_* \psi w_l \) for \(s \in [0, 1] \), then
\[
\gamma_l (0) = v_\lambda \in A_1, \; \gamma_l (1) = v_\lambda + t_* \psi w_l \in A_2.
\]

Since \(\frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right) \) is a continuous function for nonzero \(u \) and \(\gamma_l ([0, 1]) \) is connected, there exists \(s_l \in (0, 1) \) such that \(v_\lambda + s_l t_* \psi w_l \in M^-_\lambda \). By Lemma 4.12
\[
I_\lambda (v_\lambda + s_l t_* \psi w_l) < \alpha_\lambda + \alpha_0 (\mathbb{R}^N) < \alpha_0 (\mathbb{R}^N),
\]
18
and so by Lemma 4.9 we have \(v_\lambda + s_{l_2} \psi w_l \) is uniformly bounded in \(H_0^1(\Omega) \) for all \(\lambda \in (0, \lambda_1) \) and \(l \geq l_2 \). Moreover, \(\lim_{\lambda \to 0} \|v_\lambda(x)\|_{H^1} = 0 \) and

\[
\|v_\lambda + s_{l_2} \psi w_l\|_{H^1}^2 = \int_\Omega |v_\lambda + s_{l_2} \psi w_l|^p + \lambda^{\frac{p-1}{2}} \int_\Omega h(v_\lambda + s_{l_2} \psi w_l)
\]

Thus,

\[
\|s_{l_2} \psi w_l\|_{H^1}^2 = \int_\Omega |s_{l_2} \psi w_l|^p + o(1) \text{ as } \lambda \to 0
\]

or

\[
(s_{l_2})^{p-2} = \frac{\|\psi w_l\|_{H^1}^2}{\int_\Omega |\psi w_l|^p} + o(1) \text{ as } \lambda \to 0.
\]

By Lemma 4.11 and Remark 4.2 we obtain

\[
s_{l_2} = 1 + o(1) \text{ as } \lambda \to 0.
\]

(v) By part (iv) and Lemma 4.12.

For \(l \geq l_2 \), we define a map \(F_l : S^{N-1} \to H_0^1(\Omega) \) by

\[
F_l(e)(x) = v_\lambda(x) + s_{l_2} \psi w_l(x) \text{ for } e \in S^{N-1}.
\]

Then we have the following result.

Lemma 4.17 There exists a sequence \(\{\sigma_l\} \subset \mathbb{R}^+ \) such that

\[
F_l \left(S^{N-1} \right) \subset \left[I_\lambda \leq \alpha_\lambda + \alpha_0 \left(\mathbb{R}^N \right) - \sigma_l \right].
\]

Proof. By Lemma 4.12 and Lemma 4.16 (iv), for each \(l \geq l_2 \) we have \(v_\lambda + s_{l_2} \psi w_l \in M_\lambda^{-} \) and

\[
\sup_{t \geq 0} \int_\Omega I_\lambda(v_\lambda + t \psi w_l) < \alpha_\lambda + \alpha_0 \left(\mathbb{R}^N \right) \text{ uniformly in } e \in S^{N-1}.
\]

Since \(F_l \left(S^{N-1} \right) \) is compact. Thus, \(I_\lambda(v_\lambda + s_{l_2} \psi w_l) \leq \alpha_\lambda + \alpha_0 \left(\mathbb{R}^N \right) - \sigma_l \), so that the conclusion holds.

The following lemma is a key lemma to prove our main result.

Lemma 4.18 There exists \(\delta_0 > 0 \) such that if \(u \in M_0 \) and \(I_0(u) \leq \alpha_0 \left(\mathbb{R}^N \right) + \delta_0 \), then

\[
\int_{\mathbb{R}^N} \frac{x}{|x|} \left(|\nabla u|^2 + u^2 \right) \, dx \neq 0.
\]
Proof. On the contrary, there exists sequence \(\{ u_n \} \) in \(M_0 \) such that \(I_0 (u_n) = \alpha_0 (\mathbb{R}^N) + o(1) \) and
\[
\int_{\mathbb{R}^N} \frac{x}{|x|} \left(|\nabla u_n|^2 + u_n^2 \right) dx = 0.
\]
By Wang-Wu [28, Lemma 7], \(\{ u_n \} \) is a \((\text{PS})_{\alpha_0(\mathbb{R}^N)}\)-sequence in \(H^1_0(\Omega) \) for \(I_0 \). It follows from Proposition 4.2 and Lemma 4.4 that there exist a subsequence \(\{ u_n \} \) and a sequence \(\{ x_n \} \subset \mathbb{R}^N \) such that
\[
\begin{align*}
u_n &\rightharpoonup 0 \text{ weakly in } H^1_0(\Omega), \\
|x_n| &\to \infty \text{ as } n \to \infty \text{ and } \\
u_n (x) &= w(x - x_n) + o(1) \text{ strongly in } H^1(\mathbb{R}^N).
\end{align*}
\]
Assume \(\frac{x_n}{|x_n|} \to e \) as \(n \to \infty \), where \(e \in S^{N-1} \). Then by the Lebesgue dominated theorem, we have
\[
0 = \int_{\mathbb{R}^N} \frac{x}{|x|} \left(|\nabla u_n|^2 + u_n^2 \right) dx
= \int_{\mathbb{R}^N} \frac{x + x_n}{|x + x_n|} \left(|\nabla w|^2 + w^2 \right) dx + o(1)
= \left(\frac{2p}{p - 2} \right) e \alpha_0 (\mathbb{R}^N) + o(1),
\]
which is a contradiction. \(\square \)

Lemma 4.19 There exists \(\lambda_2 \in (0, \lambda_1) \) such that for \(\lambda \in (0, \lambda_2) \), we have
\[
\int_{\mathbb{R}^N} \frac{x}{|x|} \left(|\nabla u|^2 + u^2 \right) dx \neq 0
\]
for all \(u \in [I_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N)] \).

Proof. For \(u \in [I_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N)] \), there exists \(t^1 > 0 \) such that \(t^1 u \in M_0 \).
By Lemma 4.8 \((ii) \), we have for any \(\mu \in (0, 1) \)
\[
I_0 (t^1 u) \leq \left(1 - \lambda \frac{p+4}{p-2} \mu \right)^{-\frac{p}{p-2}} \left(I_\lambda (u) + \frac{\lambda \frac{p-1}{p-2} \|h\|^2_{L^2}}{2\mu} \right).
\]
(18)

Since \(\alpha_\lambda < 0 \), we have \([I_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N)] \subset [I_\lambda < \alpha_0 (\mathbb{R}^N)] \). Thus, by (18)
\[
I_0 (t^1 u) \leq \left(1 - \lambda \frac{p+4}{p-2} \mu \right)^{-\frac{p}{p-2}} \left(\alpha_0 (\mathbb{R}^N) + \frac{\lambda \frac{p-1}{p-2} \|h\|^2_{L^2}}{2\mu} \right).
\]
For each \(\delta_0 > 0 \) there exist \(\mu_0 > 0 \) and \(\lambda_2 \in (0, \lambda_1) \) such that for \(\lambda \in (0, \lambda_2) \),
\[
I_0 (t^1 u) < \alpha_0 (\mathbb{R}^N) + \delta_0.
\]
(19)
Since \(t^1 u \in M_0 \) and \(t^1 > 0 \), by Lemma 4.18 and (19)

\[
\int_{\mathbb{R}^N} \frac{x}{|x|} \left(|\nabla (t^1 u)|^2 + (t^1 u)^2 \right) \, dx \neq 0.
\]

This implies,

\[
\int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + (u)^2) \, dx \neq 0
\]

for all \(u \in [I_{\lambda} < \alpha_{\lambda} + \alpha_0 (\mathbb{R}^N)] \). \(\square \)

From Lemma 4.19, we define \(G : [I_{\lambda} < \alpha_{\lambda} + \alpha_0 (\mathbb{R}^N)] \rightarrow S^{N-1} \) by

\[
G(u) = \int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + |u|^2) \, dx / \left| \int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + |u|^2) \, dx \right|.
\]

Then we have the following results.

Lemma 4.20 There exist \(\lambda_* \in (0, \lambda_2) \) and \(l_* \in (l_2, \infty) \) such that for \(\lambda \in (0, \lambda_*) \) and \(l \in (l_*, \infty) \), the map

\[
G \circ F_l : S^{N-1} \rightarrow S^{N-1}
\]

is homotopic to the identity.

Proof. Let \(\Theta = \left\{ u \in H^1_0 (\Omega) \setminus \{0\} \mid \int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + |u|^2) \, dx \neq 0 \right\} \). We define

\[
\overline{G} : \Theta \rightarrow S^{N-1}
\]

by

\[
\overline{G}(u) = \int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + |u|^2) \, dx / \left| \int_{\mathbb{R}^N} \frac{x}{|x|} (|\nabla u|^2 + |u|^2) \, dx \right|.
\]

as an extension of \(G \). By Lemma 4.16 (iv), for \(\theta \in [0, 1/2) \)

\[
(1 - 2\theta) F_l (e) + 2\theta \psi w (x + le) = \psi w (x + le) + o (1) \text{ in } H^1_0 (\Omega) \text{ as } \lambda \to 0.
\]

By an argument similar to that in Lemma 4.18, there exist \(\lambda_* \in (0, \lambda_2) \) and \(l_* \in (l_2, \infty) \) such that for \(\lambda \in (0, \lambda_*) \) and \(l \in (l_*, \infty) \),

\[
(1 - 2\theta) F_l (e) + 2\theta \psi w (x + le) \in \Theta \text{ for all } e \in S^{N-1} \text{ and } \theta \in [0, 1/2)
\]

and

\[
\psi w \left(x + \frac{l}{2 (1 - \theta)} e \right) \in \Theta \text{ for all } e \in S^{N-1} \text{ and } \theta \in [1/2, 1).
\]
We define

$$\zeta_t (\theta, e) : [0, 1] \times S^{N-1} \to S^{N-1}$$

by

$$\zeta_t (\theta, e) = \begin{cases} \overline{G} ((1-2\theta) F_t (e) + 2\theta \psi w (x + le)) & \text{for } \theta \in [0, 1/2); \\ \overline{G} \left(\psi w \left(x + \frac{l}{2(1-\theta)} e \right) \right) & \text{for } \theta \in [1/2, 1); \\ \zeta (\theta, e) & \text{for } \theta = 1. \end{cases}$$

Then $$\zeta_t (0, e) = \overline{G} (F_t (e)) = G (F_t (e))$$ and $$\zeta_t (1, e) = e$$. Since $$h \in L^2 (\Omega) \cap L^\beta (\Omega)$$. By Lemma 4.5 (i) we have $$v_\lambda \in C (\Omega)$$. First, we claim that $$\lim_{\theta \to 1^-} \zeta_t (\theta, e) = e$$ and

$$\lim_{\theta \to 1^-} \zeta_t (\theta, e) = \overline{G} (\psi w (x + le)).$$

(a) $$\lim_{\theta \to 1^-} \zeta_t (\theta, e) = e$$: since

$$\int_{\mathbb{R}^N} \frac{x}{|x|} \left(\left| \nabla \left[\psi w \left(x + \frac{l}{2(1-\theta)} e \right) \right] \right|^2 + \left[\psi w \left(x + \frac{l}{2(1-\theta)} e \right) \right]^2 \right) dx$$

$$= \int_{\mathbb{R}^N} \frac{x - \frac{l}{2(1-\theta)} e}{|x - \frac{l}{2(1-\theta)} e|} \left(|\nabla w (x)|^2 + |w (x)|^2 \right) dx + o(1)$$

$$= \left(\frac{2p}{p-2} \right) \alpha_0 (\mathbb{R}^N) e + o(1) \text{ as } \theta \to 1^-,$$

then $$\lim_{\theta \to 1^-} \zeta_t (\theta, e) = e$$.

(b) $$\lim_{\theta \to \frac{1}{2}^-} \zeta_t (\theta, e) = \overline{G} (\psi w (x + le))$$: since $$\overline{G} \in C (\Theta, S^{N-1})$$, we obtain $$\lim_{\theta \to \frac{1}{2}^-} \zeta_t (\theta, l) = \overline{G} (\psi w (x + le))$$.

Thus, $$\zeta_t (\theta, e) \in C ([0, 1] \times S^{N-1}, S^{N-1})$$ and

$$\zeta_t (0, e) = G (F_t (e)) \text{ for all } e \in S^{N-1},$$

$$\zeta_t (1, e) = e \text{ for all } e \in S^{N-1},$$

provided $$\lambda \in (0, \lambda_*)$$ and $$l \in (l_*, \infty)$$. This completes the proof. \(\square\)

Lemma 4.21 For $$\lambda \in (0, \lambda_*)$$ and $$l \in (l_*, \infty)$$, $$I_\lambda (u)$$ has at least two critical points in $$[I_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N)]$$.

Proof. Applying Lemmas 4.15 and 4.20, we have for $$\lambda \in (0, \lambda_*)$$ and $$l \in (l_*, \infty)$$,

$$\text{cat} \left([I_\lambda \leq \alpha_\lambda + \alpha_0 (\mathbb{R}^N) - \sigma_l] \right) \geq 2.$$

By Proposition 4.2, Lemma 4.14 and Lemma 4.16 (v), $$I_\lambda (u)$$ has at least two critical points in $$[I_\lambda < \alpha_\lambda + \alpha_0 (\mathbb{R}^N)]$$.

\(\square\)
We can now complete the proof of Theorem 1.3: For $\lambda \in (0, \lambda^*)$, from Theorem 4.10 and Lemma 4.21, the equation (1) has three positive solutions v_λ, v_1, v_2 such that $v_\lambda \in M^+_\lambda$ and $v_i \in M^-_\lambda$ for $i = 1, 2$. Then

\[v_\lambda \neq v_i \text{ for } i = 1, 2. \]

Let $u_\lambda = \lambda^{\frac{1}{p-1}} v_\lambda$ and $u_i = \lambda^{\frac{1}{p-1}} v_i$, then u_λ, u_1 and u_2 are positive solutions of equation (E_λ) and $u_\lambda \neq u_i$ for $i = 1, 2$. Thus, the equation (E_λ) has at least three positive solutions.

Remark 4.3 If $\omega \subset B^N (0; \rho)$ and ρ is sufficiently small such that Benci-Cerami’s minimax argument is holds for equation (2), then similar to the argument in Adachi-Tanaka [1], there exists a positive number $\lambda^* \leq \lambda_+$ such that Benci-Cerami’s minimax argument also work for equation (1) and $\lambda \in (0, \lambda^*)$. We can conclude that for $\lambda \in (0, \lambda^*)$, the equation (E_λ) has at least four positive solutions since the critical value of our solutions in Theorem 1.3 are strictly lower than the first break down of the Palais–Smale condition. \hfill \blacksquare

Acknowledgment. The author is grateful for the referee’s valuable suggestions.

References

